Abundance ratios & ages of stellar populations in the HARPS-GTO sample

Elisa Delgado Mena
Instituto de Astrofísica e Ciências do Espaço
Porto, Portugal

V. Adibekyan, M. Tsantâki, S.G. Sousa, N.C. Santos
The importance of heavy elements

Elements heavier than iron would require energy to be created by stellar fusion → neutron captures, which can be slow or rapid, followed by β decay:

- **s-process**: long timescales between consecutive captures, low density of neutrons: produce most of elements with \(A < 150 \)
- **r-process**: short timescales, high density of neutrons: produce elements like Eu
- **\(p \)-process**: proton rich nuclei, marginal contribution

Production sites:
- **Weak s**-component, \(60 < A < 90 \) : produced during He-core and C-shell burning in massive stars
- **Main s**-component, \(90 < A < 204 \): produced in between thermal pulses in AGB stars (mainly low mass)
- **r-process**: probably associated to explosive conditions in supernovae
The importance of heavy elements

The contribution from each process varies among different elements and change with age/metallicity → constrains to models of GCE

Estimations of s-process contribution for the Solar System composition by several authors (Cameron 1973, Arlandini et al. 1999, Bisterzo et al. 2016, etc…)

- Light-s elements: Sr (67%), Y (70%), Zr (64%)
- Heavy-s elements: Ba (83%), Ce (81%), Nd (56%)
- Eu (7%) → considered as pure r-process element

Stellar spectra and abundances

1111 stars in the HARPS GTO sample (R ~ 115000):

Volume limited sample (within 60pc, no selection based on kinematics), $V < 12$, slow rotators, no binaries, no very active stars

136 stars with planets, 975 stars without planets

$4400\text{K} < T_{\text{eff}} < 6800\text{K}$ \hspace{1cm} -1.40 < [Fe/H] < 0.55

55% spectra S/N > 200

Stellar parameters from Sousa et al. (2008, 2011) corrected for cool stars using linelist from Tsantaki et al. (2013)

Chemical abundances for α- and iron peak elements in Adibekyan et al. (2012), lithium in Delgado Mena et al. (2014,2015), oxygen in Bertran de Lis (2015) and carbon in Suarez-Andres et al. (2016)

Abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu using EWs, HFS, Kurucz ATLAS model atmospheres and the LTE code MOOG:
Delgado Mena et al. 2017, accepted by A&A \rightarrow arXiv:1705.04349
Chemical separation

Based on α-elements (Mg, Si and Ti)

- 882 thin disk stars
- 108 thick disk stars
- 8 halo stars (kinematically selected)
- 60 hαmρ stars (older than thin disk stars and with intermediate orbits between the thin and thick disk stars)

→ originated from the inner disk?

Definition based in chemistry, separation both in [α/Fe] and [Fe/H]

Adibekyan et al. (2011, 2013)
[X/Fe] vs [Fe/H] trends

Cu and Zn models by Romano et al. (2010), rest from Bisterzo et al. 2017
$[\text{X/Fe}]$ vs $[\text{Fe/H}]$ trends for 'solar T_{eff}' stars

Thin disk-thick disk $[\text{Fe/H}] < -0.2$ separation for Zn, Zr, Ba and Eu

Thin disk-håmå $[\text{Fe/H}] > -0.2$ separation for Cu, Zn, Y, Ba, Nd and Eu
[X/Fe] vs [Fe/H] trends for 'solar T$_{eff}$' stars

Thin disk-thick disk ([Fe/H] < -0.2) differences for Zn, Zr, Ba and Eu
Thin disk-hαmr ([Fe/H] > -0.2) differences for Cu, Zn, Y, Ba, Nd and Eu
Different contributions at different $[\text{Fe/H}]$

- r-process: SNII of 8-10 M\odot
- oxygen: SNII of 15 M\odot Travaglio et al. (1999)
- s-process: low mass AGB (at higher metallicities)
- Different r-process contributions to Ba (<20%), Ce (<20%), Nd (~45%) Arlandini et al. (1999) Bisterzo et al. (2016)
Stellar ages

- Parallaxes from Gaia DR1 and Hipparcos → V magnitudes, Teff and [Fe/H] with PARSEC isochrones (Bressan et al. 2012) using PARAM interface

- Spectroscopic logg, Teff and [Fe/H] → Yonsei-Yale isochrones (Yi et al 2001) and the python package q2 (Ramirez et al.)
Stellar ages

Gaia parallaxes are smaller on average than Hipparcos for our sample
- 923 stars with Gaia parallaxes, 1051 stars with Hipparcos parallaxes
- 454 stars with errors in HIP ages less than 2 Gyr
- 384 stars which also show differences between Gaia and HIP less than 1 Gyr
General $[\text{X/Fe}]$-age trends

- **Al**: coefs. $0.09545, 0.02068$
 - sigma $0.00848, 0.00118$
- **Mg**: coefs. $-0.06408, 0.02036$
 - sigma $0.00534, 0.00074$
- **Si**: coefs. $-0.02753, 0.01183$
 - sigma $0.00394, 0.00055$
- **Till**: coefs. $-0.06488, 0.01765$
 - sigma $0.00496, 0.00069$

Error age < 2 Gyr

- **Mn**: coefs. $0.01426, -0.01089$
 - sigma $0.00759, 0.00105$
- **Scl**: coefs. $0.00872, 0.01024$
 - sigma $0.00816, 0.00114$
- **Cu**: coefs. $-0.04697, 0.00310$
 - sigma $0.00799, 0.00110$
- **Zn**: coefs. $-0.10592, 0.01534$
 - sigma $0.00486, 0.00067$

Diff Gaia-Hip < 1 Gyr

- **Sr**: coefs. $0.03051, -0.00873$
 - sigma $0.00636, 0.00088$
- **Y**: coefs. $0.0579, -0.00878$
 - sigma $0.00503, 0.00070$
- **Ba**: coefs. $0.01999, -0.00754$
 - sigma $0.00694, 0.00096$
- **Eu**: coefs. $-0.06944, 0.02012$
 - sigma $0.01123, 0.00139$
Mg: constant slopes of ~0.010 dex/Gyr at [Fe/H] > -0.7 for thin disk stars
Al: slopes decrease for higher [Fe/H]. 0.018–0.022 dex/Gyr at $-0.05 < [\text{Fe/H}] < 0$ for thin disk stars, ~ 0.015 dex/Gyr at $[\text{Fe/H}] > 0$.
Zn: slopes decrease for higher [Fe/H]. 0.016-0.020 dex/Gyr at [Fe/H] < -0.2 for thin disk stars, ~0.013 dex/Gyr at [Fe/H] > -0.2. Similar slopes for hαmr stars.
Y: change of slope around 8 Gyr for thin disk stars. Slopes $[-0.012, -0.020]$ dex/Gyr for $-0.3 < [\text{Fe/H}] < 0.3$ for thin disk stars. Different slopes for thick disk and hømr stars at some [Fe/H] bins.
Sr: change of slope around 8 Gyr for thin disk stars. Quite constant slope of -0.021 dex/Gyr for thin disk stars in most metallicity bins. Different slopes for thick disk and h\(\alpha\)mr stars at some [Fe/H] bins.
[Y/Mg-Zn-Al] and [Sr/Mg-Zn-Al]
[Y/Mg-Zn-Al] and [Sr/Mg-Zn-Al]
Summary

• Heavy element abundances are necessary to constrain models of GCE and to understand the yields of both massive and low-mass stars → need of high quality data to analyze these elements.

• The distinction of the thin and thick disk (based on α elements) is also observed for Zn, Zr, Ba and Eu.

• hαmr stars show enhanced abundances of Cu, Zn, Nd and Eu when compared to the thin disk at the same metallicity. They also show lower abundances on average of Y and Ba.

• The [X/Fe] ratios of thick disk stars show little correlation with age (but we have a small sample). Thin disk stars show clear correlations with age for some elements but the slopes can change at different [Fe/H] regimes. → steeper trends for Sr ratios than for Y ratios, valid at lower metallicities.

• Looking forward for future GAIA releases: more precise ages will allow to increase our sample and evaluate how the different elements behave in smaller ranges of T_{eff} and [Fe/H]
Thanks