The Gaia-ESO Survey:

Enrichment Histories of the Galactic thick and thin disc

xtfu@oabo.inaf.it
The Road Map of Li studies:

- **Cosmological lithium problem**
 - Non-standard cosmological model
 - New particle physics to destroy Li
 - Altering nuclear reaction (e.g., cross section)
 - Magnetic field: ionize Li and blow it away during star formation

- **Galactic Li enrichment**
 - Diffusion during main sequence
 - Burned by rotational induced mixing
 - Internal gravitational waves

- **Li in ISM**
 - Pre-main sequence depletion + mass accretion + main sequence diffusion

- **Li-rich RGB stars**
 - Planetary brown dwarf
 - White dwarf as a binary companion
 - Brown Li

- **Li problem in the Sun**
 - Brief and universal in stellar evolution
 - The preservation
 - The ejection of circumstellar shells or disk

- **Lithium**
 - Li^+
 - Neutral atoms
 - Isotope fraction
 - Molecular Absorption line at 440.99 GHz ($\nu = 1$), can be observed with ALMA

- **Galactic thick disk**
 - Li-alpha anti-correlation & Li-alpha correlation
 - Decrease after the solar metallicity

- **Galactic thin disk**
 - Decrease in Li abundance

- **AGB stars**
 - Mixing processes from main sequence turn-off to RGB bump
 - Li production
 - Li depletion
 - Li burning time is fixed by the luminosity of RGB bump
 - Use the Li depletion to constrain mix or extra-mixing (enshrouding etc.)

- **The Galactic Li enrichment**
 - Connect to binary fraction
 - Nova
 - ENSI process in the shell of post-collapse BLM
 - (NO observation evidence yet)
 - Galactic Cosmic Ray
 - Globular clusters
 - Open clusters
 - Dwarf galaxies
 - Environmental sensitivity?

- **Li problem in the Sun**
 - Pre-main sequence depletion + mass accretion + main sequence diffusion
 - The preservation
 - The ejection of circumstellar shells or disk
 - Connect to RGB mass loss
 - Can be checked with IF excess

- **Li-rich RGB stars**
 - Non-universal or not-brief enrichment
 - Rotational induced mixing
 - Magnetic fields

- **Li in ISM**
 - Pre-main sequence depletion + mass accretion + main sequence diffusion
 - Diffusion during main sequence
 - Burned by rotational induced mixing
 - Internal gravitational waves

- **Galactic Li enrichment**
 - Diffusion during main sequence
 - Burned by rotational induced mixing
 - Internal gravitational waves

- **Lithium**
 - Li^+
 - Neutral atoms
 - Isotope fraction
 - Molecular Absorption line at 440.99 GHz ($\nu = 1$), can be observed with ALMA

- **Galactic thick disk**
 - Li-alpha anti-correlation & Li-alpha correlation
 - Decrease after the solar metallicity

- **Galactic thin disk**
 - Decrease in Li abundance

- **AGB stars**
 - Mixing processes from main sequence turn-off to RGB bump
 - Li production
 - Li depletion
 - Li burning time is fixed by the luminosity of RGB bump
 - Use the Li depletion to constrain mix or extra-mixing (enshrouding etc.)
The unique role of Gaia-ESO survey

The only large public survey available for this study
The Galactic Li enrichment

- Novae: binary fraction
- AGB: HBB
- Li-rich RGB: problem
- Core-collapse SNe: No evidence yet
- Galactic Cosmic Ray

Charbonnel and Primas (2005)
Sbordone et al. (2010)
Ramírez et al. (2012)
Lodders et al. (2009)

Izzo et al., 2015
The Galactic Li enrichment

sources

- Novae
- AGB
- Li-rich RGB
- Core-collapse SNe
- Galactic Cosmic Ray

The Galactic thick disc

The Galactic thin disc

GC, OC, dwarf galaxies...
The Galactic Li enrichment

• Li-[α/Fe] anticorrelation
• Li-s(-process elements) correlation
GES iDR4, UVES, field single stars, log(g)>3.7, [Fe/H] err<0.13 & Li NLTE

- Checked Li measurements: 302 stars, median SNR=83
- Labeled Li upper limits: 1097 stars, median SNR=63
Tentative thick/thin separation

\[n(\alpha) = n(\text{Mg I}) + n(\text{Ca I}) + n(\text{Si I}) + n(\text{Ti I}) + n(\text{Ti II}) \]

\[[\alpha/\text{Fe}] = \log\left(\frac{n(\alpha)}{n(\text{Fe})}\right)_\ast - \log\left(\frac{n(\alpha)}{n(\text{Fe})}\right)_\odot \]

Division proposed by Adibekyan et al. 2012
Tentative thick/thin separation

stars with enriched Li

Thin disc:
stronger Li enrichment

Thin disc:
higher overall level of Li enrichment
Li-[α/Fe] ANTIcorrelation

Need to eliminate the [Fe/H] evolutionary effect
Li-[\(\alpha/\text{Fe}\)] ANTlcorrelation

stars with Li measurements

\[R(p) = -0.289 \quad p = 0.578 \]
\(-1.00 \leq [\text{Fe/H}] \leq -0.74 \)

\[R(p) = -0.034 \quad p = 0.862 \]
\(-0.87 \leq [\text{Fe/H}] \leq -0.61 \)

\[R(p) = -0.217 \quad p = 0.084 \]
\(-0.74 \leq [\text{Fe/H}] \leq -0.48 \)

\[R(p) = -0.422 \quad p = 2.0 \times 10^{-5} \]
\(-0.61 \leq [\text{Fe/H}] \leq -0.35 \)

\[A_{\text{Li}} \]

\[R(p) = -0.319 \quad p = 0.001 \]
\(-0.48 \leq [\text{Fe/H}] \leq -0.22 \)

\[R(p) = -0.041 \quad p = 0.704 \]
\(-0.35 \leq [\text{Fe/H}] \leq -0.09 \)

\[R(p) = -0.224 \quad p = 0.046 \]
\(-0.22 \leq [\text{Fe/H}] \leq 0.04 \)

\[R(p) = -0.181 \quad p = 0.142 \]
\(-0.09 \leq [\text{Fe/H}] \leq 0.17 \)

\[R(p) = -0.250 \quad p = 0.094 \]
\(0.04 \leq [\text{Fe/H}] \leq 0.30 \)

\[R(p) = -0.695 \quad p = 4.6 \times 10^{-4} \]
\(0.17 \leq [\text{Fe/H}] \leq 0.43 \)

\[R(p) = -0.750 \quad p = 0.032 \]
\(0.30 \leq [\text{Fe/H}] \leq 0.56 \)

\([\text{Fe/H}] \text{ binsize} = 0.26 \)

\(P < 0.05 \)
Li-[α/Fe] ANTIcorrelation

Preliminary results with iDR5

[Fe/H] binsize = 0.26

P < 0.05
Theoretical trend for thick disc predicted by Bisterzo et al., 2017
Li-[Ba/Fe] correlation

$P < 0.05$

[Fe/H] bin size = 0.26
Li-[Ba/Fe] correlation

P<0.05

Preliminary results with iDR5
A(Li) decline for super-solar metallicity objects
A(Li) decline for super-solar metallicity objects

Similar trend is also seen in

Ramírez et al., 2012
Delgado Mena et al., 2015
Guiglion et al., 2016
A(Li) decline for super-solar metallicity objects

Possible: due to a stronger Li depletion in the super metal-rich stars.

But... highly sensitive to the **stellar mass**

Possible: contribution from novae declines at super-solar metallicity.

The fraction of close binaries decrease with increasing $[\text{Fe/H}]$ (Gao et al., 2014; Yuan et al., 2015; Gao et al., 2017)

Needs to be tested by means of detailed chemical evolution model
A(Li) decline for super-solar metallicity objects

If it is real...

From the perspective of the Galactic chemical evolution:

During the last ~5Gyr, there is a threshold in the gas density

The star formation has several short periods of activity intercut

Li production from AGB stars and core-collapse SNe is reduced

Romano et al., 2001
A(Li) decline for super-solar metallicity objects

If it is real...

From the perspective of the Galactic chemical evolution:

May hold as well for s-process elements

During the last ~5Gyr, there is a threshold in the gas density

The star formation has several short periods of activity intercut

Li production from AGB stars and core-collapse SNe is reduced
A(Li) decline for super-solar metallicity objects

If it is real...

From the perspective of the Galactic chemical evolution:

May hold as well for s-process elements
A(Li) decline for super-solar metallicity objects

From the perspective of the Galactic chemical evolution:

May hold as well for s-process elements

\[A(Ba) = \log \left(\frac{n(Ba)}{n(H)} \right) + 12 \]

A(Ba) plateau at super-solar metallicity?
Summary:

- The Galactic thin disc has stronger and higher overall level of Li enrichment than the thick disc;
- Li-[α/Fe] anticorrelation
- Li-[s-process elements] correlation
- Li decline at super-solar metallicity

Does migration matter?
- Connected to Li-rich giant problem
- Connected to AGB yields
- Connected to star formation history
- Connected to nova rate

Enrichment Histories of the Galactic thick and thin disc

submitted to A&A