SpaceInn hare-and-hounds exercise

D. R. Reese, W. J. Chaplin, G. R. Davies, A. Miglio and many hounds

December 5, 2014

UNIVERSITY OF BIRMINGHAM

STELLAR ASTROPHYSICS CENTRE
determining accurate stellar parameters through asteroseismology is fundamental for the PLATO 2.0 mission

- characterising exoplanets
- studying galactic populations and history
- understanding stellar evolution
According to Gough (1985) there are 3 ways of inverting helioseismic data:

- “repeated execution of the forward problem” (i.e. search in parameter space, or “forward modelling”)
- analytical methods (asymptotic methods, glitch fitting)
- formal inversion techniques

this also applies to asteroseismology. However:

- greater uncertainties on “classical parameters” (\(T_{\text{eff}}, [\text{Fe/H}], L, v \sin i\) …)
- fewer number of available frequencies
it becomes important to compare these methods
 - accuracy (precise results and realistic error bars)
 - computational cost
- hare-and-hounds exercises is a good way of carrying out such a comparison
First Spacelinn hare-and-hounds exercise

Motivations

- test how accurately fundamental stellar parameters can be retrieved from individual frequencies
- compare grid-based techniques to glitch-fitting methods for characterising the convection zone
The hounds

Reese et al.

SpaceInn hare-and-hounds exercise
The hounds

Group 1
- uses grid modelling to obtain best fitting models and associated parameters
 - global parameters: M, R, ρ, $\tau = \int_0^R \frac{dr}{c}$, age etc.
 - convection zone: R_{CZ}, τ_{CZ}

Group 2
- applies glitch fitting strategy to find R_{CZ}, τ_{CZ}
The hounds

Group 1
- W. Ball
- S. Basu
- I. Brandão
- J. Christensen-Dalsgaard
- S. Deheuvels
- S. Hekker
- Y. Lebreton
- A. Mazumdar et al.
- T. S. Metcalfe
- I. W. Roxburgh
- A. Serenelli
- V. Silva Aguirre
- D. Stello

Group 2
- H. M. Antia and K. Verma
- S. Basu
- H. R. Coelho
- G. Houdek
- A. Mazumdar et al.
- M. J. P. F. G. Monteiro
- I. W. Roxburgh
The hares

Reese et al. SpaceInn hare-and-hounds exercise
The hares

Team work

- A. Miglio: produce models
- D. R. Reese: adjust models and calculate frequencies
- W. J. Chaplin & G. R. Davies: prepare “observed” data
The data

- various classic parameters (T_{eff}, L, [Fe/H])
 - we assume Gaia-quality parallax for the luminosity
- seismic indices: $\Delta \nu$, ν_{max} (these are purely indicative)
- individual frequencies
 - bypass mode parameter extraction and assume frequencies are unbiased
The hares

Reese et al.

SpaceInn hare-and-hounds exercise
Surface effects

- offset at high frequencies, caused by near-surface layers
- ways this can be implemented
 - truncate model
 - apply different boundary conditions
 - modify near-surface structure
 - use different atmosphere
 - apply non-adiabatic calculations
Surface effects

- offset at high frequencies, caused by near-surface layers
- ways this can be implemented
 - truncate model
 - apply different boundary conditions
 - modify near-surface structure
 - use different atmosphere
 - apply non-adiabatic calculations
Surface effects

- Offset at high frequencies, caused by near-surface layers
- Ways this can be implemented:
 - **Truncate model**
 - Apply different boundary conditions
 - Modify near-surface structure
 - Use different atmosphere
 - Apply non-adiabatic calculations
Surface effects

- Offset at high frequencies, caused by near-surface layers
- Ways this can be implemented
 - Truncate model
 - Apply different boundary conditions
 - Modify near-surface structure
 - Use different atmosphere
 - Apply non-adiabatic calculations

![Echelle Diagram](image-url)
Other factors

- the stellar mixture
 - possibilities: GN93, GS98, AGS05, AGSS09
- diffusion
 - is it present?
 - does it apply to all elements?
- overshoot
Other factors

- the stellar mixture
 - possibilities: GN93, GS98, AGS05, AGSS09
- diffusion
 - is it present?
 - does it apply to all elements?
- overshoot
Preliminary results

![Graph showing the ratio of \(\rho / \rho_{\text{exact}} \) for different targets. The x-axis represents the target numbers in random order, and the y-axis shows the ratio values.

Reese et al. | Spacelnn hare-and-hounds exercise
Preliminary results

Reese et al.

SpaceInn hare-and-hounds exercise
Preliminary results

- The hounds
- The hares

Reese et al.
SpaceInn hare-and-hounds exercise
Preliminary results

![Graph showing normalized difference against target in random order.](image-url)
Preliminary results

The hounds

The hares

Reese et al.

SpaceInn hare-and-hounds exercise
Preliminary results

\[R/R_{\text{exact}} \]

Target (in random order)
Preliminary results

The hounds

The hares

Reese et al.

SpaceInn hare-and-hounds exercise
Glitch fitting
Glitch fitting

\[\delta \nu (\mu \text{Hz}) \]
\[\nu (\mu \text{Hz}) \]
\[l = 0 \]
\[l = 1 \]
\[l = 2 \]

\[t_{0,\text{ind}} \]

Percentage of Realisations

Acoustic depth \(\tau \) (s)

Reese et al. SpaceInn hare-and-hounds exercise
Glitch fitting

![Graph showing glitch fitting results](image)

\[\frac{T_{cz}}{T_{cz}} (\text{exact}) \]

Target (in random order)
Glitch fitting

![Graph showing glitch fitting results](image-url)

- **Context**: The hounds
- **The hares**: Preliminary results
- **Next steps**: SpaceInn hare-and-hounds exercise

Reese et al. | Spacelnn hare-and-hounds exercise
Glitch fitting

![Graph showing normalised difference vs target in random order](image_url)
Next steps

- still waiting for final results before doing full processing
- carry out future rounds to test other quantities (He content, He ionisation etc.)